Coupled multiple timescale dynamics in populations of endocrine neurons: Pulsatile and surge patterns of GnRH secretion

نویسندگان

  • Elif Köksal Ersöz
  • Alexandre Vidal
  • Frédérique Clément
چکیده

The gonadotropin releasing hormone (GnRH) is secreted by hypothalamic neurons into the pituitary portal blood in a pulsatile manner. The alternation between a frequency-modulated pulsatile regime and the ovulatory surge is the hallmark of the GnRH secretion pattern in ovarian cycles of female mammals. In this work, we aim at modeling additional features of the GnRH secretion pattern: the possible occurrence of a two-bump surge (“camel surge”) and an episode of partial desynchronization before the surge. We propose a six-dimensional extension of a former four-dimensional model with three timescale and introduce two mutually-coupled, slightly heterogenous GnRH subpopulations (secretors) regulated by the same slow oscillator (regulator). We consider two types of coupling functions between the secretors, including dynamic state-dependent coupling, and we use numerical and analytic tools to characterize the coupling parameter values leading to the generation of a two-bump surge in both coupling cases. We reveal the impact of the slowly varying control exerted by the regulator onto the pulsatile dynamics of the secretors, which leads to dynamic bifurcations and gives rise to desynchronization. To assess the occurrence time of desynchronization during the pulsatile phase, we introduce asymptotic tools based on quasi-static and geometric approaches, as well as analytic tools based on the H-function derived from phase equation and numerical tracking of period-doubling bifurcations. We discuss the role of coupling parameters in the two-bump surge generation and the speed of desynchronization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrophysiological correlates of pulsatile and surge gonadotrophin secretion.

The hypothalamic gonadotrophin-releasing hormone (GnRH) pulse generator governs intermittent discharges of GnRH into the pituitary portal circulation and, consequently, modulates the pulsatile pattern of gonadotrophin secretion. Electrophysiological correlates of pulsatile gonadotrophin secretion have been demonstrated in the mediobasal hypothalamus of monkeys, rats and goats by recording multi...

متن کامل

Lowering cyclic adenosine-3',5'-monophosphate (cAMP) levels by expression of a cAMP-specific phosphodiesterase decreases intrinsic pulsatile gonadotropin-releasing hormone secretion from GT1 cells.

Pulsatile GnRH secretion is an intrinsic property of GnRH neurons. Since increases in cAMP levels increase excitability and GnRH secretion in the GT1-1 GnRH cell line, we asked whether cAMP levels play a role in timing excitability and intrinsic pulsatile GnRH secretion. The expression of the cAMP-specific phosphodiesterase (PDE4D1) was used in a genetic approach to lower cAMP levels. Cells wer...

متن کامل

New Insights into the Control of Pulsatile GnRH Release: The Role of Kiss1/Neurokinin B Neurons

Gonadotropin-releasing hormone (GnRH) is the ultimate output signal of an intricate network of neuroendocrine factors that, acting on the pituitary, trigger gonadotropin release. In turn, gonadotropins exert their trophic action on the gonads to stimulate the synthesis of sex steroids thus completing the gonadotropic axis through feedback regulatory mechanisms of GnRH release. These feedback lo...

متن کامل

Circadian gene expression regulates pulsatile gonadotropin-releasing hormone (GnRH) secretory patterns in the hypothalamic GnRH-secreting GT1-7 cell line.

Although it has long been established that episodic secretion of gonadotropin-releasing hormone (GnRH) from the hypothalamus is required for normal gonadotropin release, the molecular and cellular mechanisms underlying the synchronous release of GnRH are primarily unknown. We used the GT1-7 mouse hypothalamic cell line as a model for GnRH secretion, because these cells release GnRH in a pulsati...

متن کامل

Mathematical Modeling of the GnRH Pulse and Surge Generator

We propose a mathematical model allowing for the alternating pulse and surge pattern of GnRH (Gonadotropin Releasing Hormone) secretion. The model is based on the coupling between two systems running on different time scales. The faster system corresponds to the average activity of GnRH neurons, while the slower one corresponds to the average activity of regulatory neurons. The analysis of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016